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The rotational angular momentum (spin) dependence of the binary scattering amplitude 
operator is investigated for elastic collisions of homonuclear diatomic molecules with monatomie 
and diatomic particles. Starting point is a formal expansion of the jT-matrix (and consequently 
of the scattering amplitude) with respect to the nonsphericity parameter e which essentially 
measures the ratio of the nonspherical and spherical parts of the interaction potential. A trans-
scription of angle dependent potential functions into a spin operator notation is introduced. 
Potential functions and values for e may be inferred from the data available in the literature for 
the interactions: H2—He 1/4) and H2—H2 (sfa 1/20). As far as elastic events are concerned, 
irreducible spin tensors of even rank only occur with the interaction potential and consequently 
with the scattering amplitude in order e. The most important terms of the scattering amplitude 
of diatomic molecules are quadratic in the spins. These terms are discussed in detail. In order e2 

the scattering amplitude also contains irreducible spin tensors of odd rank. A knowledge of the 
orders of magnitude of the various spin — dependent terms is of interest for the SENFTLEBEN-
BEENAKKER effect and for NMR in polyatomic gases. 

The binary scattering amplitude (operator) for 
rotating molecules can be divided into a part which 
commutes (spherical part) and one which does not 
commute (nonspherical part) with the sum of the 
rotational angular momenta (spins) of two colliding 
particles (diamagnetic molecules). 

The spin dependence of the (nonspherical) scat-
tering amplitude is of crucial importance for the 
kinetic theory of polyatomic gases as far as it is 
concerned with the influence of an external mag-
netic field on the classical transport properties1 

(SENFTLEBEN-BEENAKER e f f e c t 2 ) . 
Furthermore, the nonspherical part of the scat-

tering amplitude determines the magnitude of the 
rotational relaxation constant which, in turn, is of 
interest for the interpretation of NMR data3 ob-
tained for polyatomic gases. Sound absorption 

1 L. WALDMANN, in Proc. of the International Seminar on 
the Transport Properties of Gases, Brown University, 
Providence, R. J. 1964. — L. WALDMANN, in Funda-
mental Problems in Statistical Mechanics II, ed. E.G. 
D. Cohen, North Holland, Amsterdam 1968. — S. HESS 
and L. WALDMANN, Z. Naturforsch. 21a, 1529 [1966]. 
— F. R. MCCOURT and R. F. SNIDER, J. Chem. Phys. 
46, 2387 [1967]; 47, 4117 [1967]. - Y. KAGAN and 
L. MAKSIMOV, SOV. Phys. JETP 24, 1272 [1967]. 

2 H. SENFTLEBEN, Phys. Z. 31, 822, 961 [1930]. -
H. ENGELHARDT and H. SACK, Phys. Z. 33, 724 [1932]. 
— J . J . M . BEENAKKER, G . SCOLES, H . P . F . K N A A P , 
and R. M . JONKMAN, Phys. Letters 2, 5 [1962]. — For 
a list of the lierature on the Senftleben-Beenakker effect 
see BEENAKKER'S review article in: Festkörperprobleme 
VIII, ed. O. MADELUNG, Vieweg, Braunschweig 1968. 

measurements4 in polyatomic gases yield informa-
tion on rotational transitions caused by inelastic 
collisions. The characteristic relaxation time is also 
determined by the nonsphericity of the scattering 
amplitude. 

Theoretical investigations so far have mainly been 
concerned with effective cross sections for rotational 
transitions5 rather than with the calculation of the 
nonspherical scattering amplitude which contains 
more information and is needed for the SENFT-
LEBEN-BEENAKKER effect . 

A "phenomenological" M-matrix theory which 
yields the most general form of a spin-dependent 
scattering amplitude subject to parity and time 
reversal invariance could be applied to molecular 
collisions much as it has been used for nuclear col-
lisions6 and nuclear reactions7. It seems desirable, 

3 A . ABRAGAM, The Principles of Nuclear Magnetism, 
Oxford University Press, Oxford 1961. — J. S. WAUGH, 
in Proc. of the XII Colloque Ampere, ed. R. Blinc, 
North Holland, Amsterdam 1967, p. 41. — E. T W A R D 
and R. L. ARMSTRONG, J. Chem. Phys. 47, 4068 [1967]. 

4 C. G . SLUIJTER, H . F . P . K N A A P , a n d J . J . M . BEENAK-
KER, Phvsica 30, 745 [1964]; 31, 915 [1965], 

5 K . TAKAYANAGI, Suppl. Progr. Theor. Phys. 25 , 1 (1963). 
6 L. WOLFENSTEIN, and J. ASHKIN, Phys. Rev. 85, 947 

[1952]. 
7 P . L . CSONKA, M . J . MORAVCSIK, a n d M . D . SCADRON, 

Ann. Phys. N . Y . ) 4 1 , 1 [1967]. - W . E. KÖHLER, and 
G. NACHTRAB, Diplomarbeiten, Erlangen 1966 (un-
published). W . E. KÖHLER and D. F I C K , Z. Phys. 2 1 5 , 
408 [1968], 

8 The Cartesian components of si and «2 separately obey 
the angular momentum commutation relations; of 
course, si commutes with »2-
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however, to find out which of the various terms are 
the most important ones, the more so, as the number 
of possible terms increases rapidly with the mag-
nitude of the spins involved. 

Such an analysis shall be given here for elastic 
collisions (i.e., where the directions of the spins but 
not their magnitudes may be affected by collisions) 
of homonuclear diatomic molecules with small non-
sphericity. In particular "diatomic molecule-spheri-
cal particle" and "diatomic molecule-diatomic 
molecule" collisions shall be considered. 

The starting point is the Lippmann-Schwinger 
equation which connects the scattering amplitude 
with the interaction potential. Although we are far 
from solving this integral equation analytically with 
a given nonspherical interaction potential in an ap-
proximation which is reasonable for molecular col-
lisions, we are able to indicate the order of mag-
nitude of the various spin-dependent terms of the 
scattering amplitude. This is already of great help 
for understanding some features of the SENFTLEBEN-
BEENAKKER ef fect . 

§ 1. Connection between Scattering Amplitude 
and Interaction Potential 

W e are concerned with the binary scattering 
amplitude operator a in the center of mass system 
and on the energy shell. For elastic collisions of 
particles with spin it depends on the relative kinetic 
energy E = (l/2m)p2 (m: reduced mass), on the 
unit vectors e and e specifying the directions of the 
initial and final relative momenta p' — pe' and 
p = pe, respectively, and on the spin vector oper-
ators « i and s2 (in units of %) of the colliding par-
ticles (labelled by 1 and 2), i.e. 

a = a(E, e, e'; si, s2). (1.1) 

The scattering amplitude is related to the scattering 
^ - m a t r i x on the energy shell b y 9 

a{E, e, e ; sx,s2) = - g f p & e , e'; « i , s2). (1.2) 

Here occurs in the momentum representation: 
it is linked with the ^"-matrix in a:-representation 
by 
5T(E,e,e'-, si,s2) (1.3) 

9 e.g. M . L . GOLDBERGER, and K . M . WATSON, Collision 
Theory, Wiley, New York 1964, p. 236. 

with k = pjh; Q = Jd3 x is a space volume (volume 
of quantization). 

The scattering amplitude defined by (1.2) has the 
dimension of a length. The factor occuring there has 
been chosen such that 

ö{E,e'-e) = tTitT2{rf(E,e,e'-,si,s2) (1.4) 
• a(E, e, e',si, s2)}/(2Si + 1) (2 S2 + 1) 

is a spin-averaged differential cross section. Here trt-
denotes the trace with respect to the spin indices 
of particle i ; Si is the magnitude of the relevant 
spin. 

The ^"-matrix, in turn, is connected with the 
interaction potential by the Lippmann-Schwin-
ger equation. The formal solution of this equation 
reads (in a representation-invariant notation) 

g- = tT(1 + y-T). (1.5) 

Here & is the appropriate Green's function for out-
going waves pertaining to the full Hamiltonian. 

§ 2. Expansion of the ^"-Matrix with Respect 
to the Nonspherical Potential 

In space representation the interaction potential 
V depends on the position vector x pointing from 
the c .m. of molecule 1 to the c .m. of molecule 2, 
and on the spin vectors si and s2. I t can be divided 
into a spherical part V depending on the distance r 
(and possibly on the scalar si • s2) and a non-
spherical part ev 

• r = v + ev. (2.i) 
The nonspherical part may be written as 

ev(x, si , s2) = e y vn(r) Un(x, si,s2), (2.2) 
n> 0 

where Un is a function o f the unit vector x = r~1x 
and the spin vectors but not of the distance r. 

The numerical factor e (nonsphericity parameter) 
is chosen in such a way that the leading vn (r) is of 
the same magnitude as V(r). For the nonspherical 
potentials we found in the literature, e is approxi-
mately in the range from 0.05 to 0.3. In these 
cases, it seems appropriate to expand with res-
pect to e, i .e. , with respect to powers of the non-
spherical part of the interaction potential: 

= T<0) + e T W + £ 2 f ( 2 ) . . . . (2.3) 

Using (1.5) and 
& = G(1 + ev&), (2.4) 



where G is the Green's function pertaining to the 
kinetic energy plus the spherical interaction poten-
tial V, one readily finds 

T( o) = F(1 + GV), 

T(» = (l + VG)v{l+GV), (2.5) 
T(2) = (I + VG)vGv( 1 +QV). 

Note that this perturbation expansion with respect 
to the nonspherical part of the interaction potential 
is quite different from a Born approximation (which 
cannot be used for molecular collisions at room tem-
perature) since the dominant spherical part of the 
potential is here fully taken into account. 

Next we consider several examples of nonspherical 
interaction potentials which have been proposed for 
diatomic molecule-spherical particle collisions. 

§ 3. Spin-Dependent Potential for "Diatomic 
Molecule-Spherical Particle" Interaction 

W e first consider the collision of a rotating di-
atomic molecule with a spherical particle. Collisions 
of this type occur with mixtures of diatomic and 
monatomie gases as well as in H 2 gas where p - H 2 

in the rotational ground state can be treated a 
spherically symmetric particle. 

The interaction potential will depend on the dis-
tance r between the particles and on the angle % 
between the axis of the molecule and the vector 
connecting its center of mass to the spherical 
particle. The dependence on the angle % can be ex-
pressed in terms of Legendre polynomials Pn ( cos^) : 

X) = V(r) + J Vn(r) Pn(cos x ) . (3.1) 
nä 1 

Here F(r) is the spherical part of the potential. I f 
we confine our attention to homonuclear diatomic 
molecules such as H 2 and N 2 , then only even 
Legendre polynomials occur in the sum in (3.1). 

The short range part o f the angle-dependent inter-
action potential is linked with the deviation of the 
shape of the molecule f rom spherical symmetry 5 . 
The long range part of the nonspherical interaction 
potential (for particles without a permanent electric 
dipole moment) is related to the static quadrupole-
quadrupole interaction and even more to induced 
multipole-multipole interactions. In both cases the 
P 2 - term will be the most important one and all 
higher Legendre polynomials may be neglected5 . 

In order to find the connection between the non-
spherical potential (3.1) and a spin-dependent poten-

tial as used in (2.2), (2.4), (2.5) we first observe that 
one has 

P2(cosx) = lu^UvXnXv, (3.2) 

where u is a unit vector parallel to the molecular 
axis. Cartesian components of vectors and tensors 
are denoted by Greek indices. For these the sum-
mation convention is used. The bar ' denotes 
the irreducible (symmetric traceless) part of a ten-
sor, e.g. 

aßbv = \ [aß bv + avbß) — \a-bdßV, (3.3) 

where a and b are vectors and dßV is the isotropic 
unit tensor of rank 2. 

Next we have to express the tensor ußuv as a 
"spin-operator", i .e. given the spin vector operator 
s (with s • u = 0 ; rotator!) classically speaking, an 
average over the orientation of u in a plane perpen-
dicular to s has to be taken. The magnitude S o f 
the spin is taken to be constant (elastic scattering!). 
In operator notation (with respect to the magnetic 
quantum numbers) we have with a proportionality 
constant c 

(%w„) 0p = csßsv, (3.4) 

since sßsv is the only irreducible spin tensor of 
rank 2 which is available. The subscript " o p " re-
fers to the operator notation (with respect to spin 
indices). The constant c may be found by multiply-
ing (3.4) with sßsv (and contracting) and using 
s • u = 0, and 

SßSy7^y = § S(S + 1)[8(8 + 1) - f ] . 

Here S is the magnitude of the spin, i .e. 
s • s = S(S + 1)- Note that the bracket vanishes 
for 8 = 1 

Thus, according to (3.2), one finally obtains 

( P 2 (cos x))op = - ! [8 (S + 1) - f ] - 1 ^ ^ xv. (3.5) 

This result is a special case of the more general 
formulas for the "transcription" of Pi(cos x) into 
a "spin-operator" notation which, also for inelastic 
collisions, may be obtained by using rigid rotator 
wave functions and Clebsch-Gordan algebra. For 
details, see the appendix. 

Thus, we have to deal with an interaction poten-
tial of the type 

r = V(r) + ev(r) [S(S + 1) - f ] " 1 ^ « , « ^ . (3.6) 

The nonsphericity parameter e is independent of S 
if the distance of the two atoms of the diatomic 



molecule does not depend on S (rigid rotator). Here 
and in the following, we write v (r) instead of vi (r) 
(cf. 2.2). 

Next we want to give some examples for func-
tions V(r), v(r) and the nonsphericity parameter e 
as they can be obtained from data available in the 
literature by using relation (3.5). Our aim is to show 
clearly the meaning of e for various potentials and 
to give numerical values for it. Therefore, we only 
state the functional dependence of V and t i o n r but 
not the numerical values of the constants involved. 
Here we consider the interaction of rotating H 2 

molecules with p - H 2 in the rotational ground state 
and with He atoms. 

1. (rotating) H2—P-H2 (rotational ground state) 

a) In connection with an attempt to explain the 
measured viscosity1 0 o f H 2 at low temperatures 
N I B L E T T a n d T A K A Y A N A G I 1 1 u s e d t h e f o l l o w i n g 

functions for the interaction of o -H 2 with ground-
state p - H 2 : 

V{r) = A (I + ar)e~«r — Br~« - Cr~8, 

v(r) = 1.07.4(1 — a'r)e-<"- + Br~*, (3.7) 

and e = 0.050. (3.8) 

There occur quite a lot of (positive) constants A, 
B, C, a, a', a which may be inferred from Ref . 1 1 . 
Remarkable is the rather small value for e. 

b) In dealing with rotational transitions (where 
the magnitudes of the spins are changed during a 
collision) TAKAYANAGI12 used a Morse potential for 
both p - H 2 and o -H 2 interactions with ground state 
P -H 2 : 

V(r) = D{e-a(r ~ro) — 2e-a(r~ro)l2), 

v(r) = - D e - a ( r - r o ) , (3.9) 

with e = 0.056. (3.10) 

Here D, a and ro a r e constants. 

2. (rotating) Hi—He 

a) The following potential functions for the o -H 2 -
He interaction have been used by Waugh and co-
workers (see Ref . 3 ) in order to calculate rotational 
relaxation constants which can be compared with 

E. W. BECKER, and 0. STEHL, Z. Phys. 133, 615 [1952]. 
11 P. D . NIBLETT, and K. TAKAYANAGI, Proc. Roy. Soc. 

London A 250, 222 [1959]. 

N M R data: 
F(r) = A(e~«r — br~*), 

v(r) = — A(e~"r — 6 ' r - 6 ) (3.11) 

with £ = 0.142. (3.12) 

Again A, a, b and b't^OAb are constants. 
Here the nonsphericity parameter e is almost 

three times larger than in the case of the H 2 - H 2 

interaction. This might be connected with the fact 
that the He-atom is smaller than the H 2 molecule. 

b) ROBERTS13 calculated the (angle dependent) 
interaction energy of a H 2 molecule with a He atom 
from first principles using a simple wave function 
made up of 1$ orbitals centered on the three nuclei. 
It turned out that he could represent the numer-
ically computed interaction energy quite accurately 
by a potential function of the type (3.1) with 
only a spherical term and a P 2 ( c o s ^)-term. His re-
sults can be expressed in the following form of the 
repulsive part of the interaction: 

V{r) = Ce~™, 

i > ( r ) = - C e - « , (3.13) 

with £ = 0.282, (3.14) 

C and a again being constants. 
Note that ROBERTS' nonsphericity parameter 

(3.14) is twice as large as the value (3.12) given by 
W A U G H . 

The values for e quoted here apply to the lowest 
rotational states of the H 2 molecules (i.e. for rota-
tional quantum numbers 1, 2, possibly for 3 and 4 
too). TAKAYANAGI5,12 used the same nonsphericity 
for any rotational state of the H 2 molecule. 
ROBERTS 13, however, showed that the nonsphericity 
is quite sensitive to the distance between the protons 
(bond length) in the H 2 molecule. Hence the non-
sphericity may be expected to increase with the 
rotational quantum number. 

§ 4. Scattering Amplitude for "Diatomic-
Monatomic" Collisions 

With the nonspherical interaction potential (3.6) 
the term of the ^ - m a t r i x which is linear in the non-
sphericity parameter e obviously will contain the 

12 K . TAKAYANAGI, Proc. Phys. Soc. London A 70, 348 
[1957 ] . - Sei. Rep. Saitama Univ. A 3, 87 [1959 ] . 

1 3 C. S. ROBERTS, Phys. Rev. 131, 203 , 2 0 9 [1963] . 



second rank irreducible spin tensor. This term 
(cf. 2.5) can be written as 

Tii) = T$[S(S + 1) - (4.1) 

According to (2.5) the tensor T^J is given by 

T™= (1 + VG)i^cvv(r)( 1 + QV). (4.2) 

An operator notation has been used here. Note that 
the Green's function G is neither diagonal in x- nor 
in p-representation. 

In view of (4.1) the part of the scattering am-
plitude which is linear in e will also contain susv. 
Hence up to terms of order e the scattering am-
plitude reads 

a = a0 + + 1) - 0(e2). (4.3) 

Here ao is the spherical part of the scattering am-
plitude which is connected to TT<0> (cf. 2.5) ac-
cording to (1.2) and (1.3). The tensor AßV is related 
to (4.2) by 

(4.4) 

where occurs in momentum representation 
(cf. 1.3). On the other hand, Aßv also can be ex-
pressed in terms of irreducible tensors which can 
be constructed from the Cartesian components of 
the unit vectors e and e : 

Aflv = 2aie/le,v + a2(eßev + e,lxev). (4.5) 

Here a\ and a2 are scalar functions (like ao) depend-
ing on the relative kinetic energy E and the angle 
of deflection ft defined by 

e- e' = cos ft. (4.6) 

These functions are linked with (4.5) by 

ai = (c2 A i — c12A2)jD, 

«2 = [c\A2 — c\2Ai)jD (4.7) 

where the abbreviations 

Ai = 2eßev'Aßv, A2 = {eßev - f e'^e'A A ßv, (4.8) 

Ci = 2 + | COS2 ft , Ci2 — | cos ft, 
c2 = | + 2 cos2 ft, (4.9) 

and D = ci c2 — cf2 have been used. 
Next we consider the terms of the ^"-matrix 

which are quadratic in e. In particular we want to 
show that the interaction potential (3.6) implies that 
the scattering amplitude contains a "re • s-term" of 

order e2 : 
£ 2 a 3 [ S ( S + l ) - f ] - i « - s , (4.10) 

where 
n = e' X e/sin ft (4.11) 

is a unit vector perpendicular to the collision plane 
and a3 = as(E, ft) is a scalar. To this end we note 
that 

TW = T$tßV[S(S + 1) - f ] - 2 w 7 v (4-12) 

contains a product of two second rank irreducible 
spin tensors which can be expressed by a hnear 
combination of irreducible spin tensors of rank 0 
to 4, i.e., one has 

T( 2) = Co Tf + Ci SA ekßV T^vq • • • 

-(- CasUsVsU sV T^v.n'r' (4-13) 

with the constants c$ (i = 0, 1, . . . , 4). These con-
stants may be determined by multiplying (4.13) 
with 1, sx, ... and taking the trace on both sides. 
Thus one obtains (for spin traces see e.g. HESS and 
WALDMANN, R e f . 1 ) 

eo = £ S ( S + l ) [ S ( S + l ) - f ] f 

c1 = i%[S(S - h i ) — f ] . (4.14) 

The 4th rank tensor v , in analogy to (4.2), is 
given by 

Tflys = (1 - f VQ) "wvv(r) G 'xß xv'v(r) (1 +QV). 
(4.15) 

Obviously, the first term in (4.13) is a spherical one. 
As, however, it only contributes in order e2, it is 
negligible compared with T<°>. The terms in (4.13) 
containing the irreducible spin tensors of rank 2, 3, 4 
(in a linear way) are disregarded here, for there is 
already a term of order e containing a spin tensor 
of rank 2; those of rank 3 and 4 are not of interest 
for the SENFTLEBEN-BEENAKKER effect for linear 
molecules. Fourth rank spin tensors, however, are 
of importance for regular octahedral molecules 13a. 

The second term in (4.13) yields the desired ns-
term (4.10) of the scattering amplitude if one takes 
(4.13) in p-representation [cf. (1.2)]. Since T(^VJJlv 

has positive parity the vector 1S a n axial 
vector. The only axial vector which can be con-
structed from p = pe and p' — pe' is proportional 
to the unit vector n, thus one has 

ekßvTflve{E, e, e') = Cnx. (4.16) 

13a S. HESS, Phys. Letters 28 A , 87 [1968]. 



The scalar function C is easily obtained by multi-
plying (4.16) with rix- Hence the scalar function 
is given by (cf. 1.2 and 4.14) 

«3 = - 2 ™h2 i I exuv T$t,Q (E, e, e'). (4.17) 

§5. Spin-Dependent Potential for the Interaction 
of Two Diatomic Molecules 

Now we consider the interaction of two diatomic 
molecules. The interaction potential corresponding 
to (3.1) in general will depend on three angles x i , 
/2 and cp. Here (i = 1 ,2 ) is the angle between 
the molecular axis of molecule i and x (x : position 
vector of the c .m. of the first molecule relative to 
the c. m. of the second molecule), cp — cp\ — cp2 is the 
angle between the projections of the molecular axes 
on a plane perpendicular to x. Thus the most gen-
eral interaction potential will be of the form 

r{r,Xi>Xi><P) (S-1) 

= 2 ^vU',m{r)[Yim (xi,cpi) Yi'm(x2,<pz) + C.c.] . 
IV M 

The Y i m ( x i , (ft) are the usual spherical harmonics 
(e.g. see Ref . 9 ) . The summation over m ranges from 
m — 0 to m = min {1,1'), the I and V summations run 
from 0 to oo. 

I f the Vw,m with m =t= 0 can be neglected com-
pared with Vw, o — this indeed is fulfilled for the 
H2-H2 interaction — one may write (5.1) in terms 
of Legendre polynomials using 

(x) = Y'o (x) = m + m ^ Pi (cos x) • 

Thus one obtains 

V (r, xi, Xi) = 2 (r) pi <cos Xi) pv (cos Xi) > (5-2) 
II' 

with 

Vw (r) = ~ J / 2 T + 1 1 / 2 V + 1 Viv, 0 (r). (5.3) 

In order to get rid of the angle cp one might also 
average (5.1) over this angle. Now one also finds an 
interaction potential like (5.2), but then the relation 
(5.3) is no longer fulfilled. 

For identical molecules one has Vw = Vvi- I f the 
molecules are homonuclear both I and V are even. 

For identical homonuclear diatomic molecules the 
most important nonspherical terms will be pro-
portional to 

^ ( c o s ^ i ) + P2{cos xz) 

and P 2 ( c o s ^ i ) P 2 ( c o s ^ 2 ) - (5.4) 

Hence we will have to deal with a spin-dependent 
interaction potential analogous to (3.6) 

r=V(r)+ev20(r)[S^(l)^v+S^)^v]xlliv 
' 11 1 

+ £V22(r) 2(1) Sf (2)«!^«! v &2H' $2v' Xß Xp Xp' . 
(5.5) 

Relation (3.5) has been used in arriving at (5.5). The 
rotational spin vectors of the interacting molecules 
are denoted by si and S2- The abbreviation 

Sl(i) = Si(Si + 1 ) - | , (5.6) 

— where St is the magnitude of the spin of particle i — 
has been introduced for convenience. 

Again V(r) is the spherical part of the interaction 
potential. 

Next we mention brief ly two examples for the 
potential functions F(r), V2o{r), v22(r) and the value 
of the nonsphericity parameter e. Both examples 
refer to the H2-H2 interaction. 

a) I n R e f . 1 1 NIBLETT and TAKAYANAGI gave a 
rather complicated angle dependent interaction po-
tential for the H2-H2 interaction. But the leading 
nonspherical terms are of the type (5.4). From the 
data they gave one may infer V, V20 and ^22- Both 
V and v2o contain short range terms similar to (3.7) 
and long range terms proportional to r~6 and r~5, 
V22 only contains terms proportional to r - 6 and r~5. 
The nonsphericity parameter is of the order 0.05. 

b) Dealing with rotational transitions of H2 
molecules, TAKAYANAGI5, 12 used a Morse potential 
with V and ^20 (r) = v (/") as given by (3.9), V22 ( r ) = 0, 
and E = 0.056. 

For further details on intermolecular forces refe-
rence is made to the reviews articles in vol. 12 of 
„Advances in Chemical Physics" 1 4 a 

§ 6. Scattering Amplitude for the Collision 
of Two Diatomic Molecules 

The spin dependent interaction potential (5.5) 
implies that the scattering amplitude for the col-
lisions of two diatomic molecules with rotational 
spin vectors s i and S2 reads up to terms of order E : 

a = a0 + eAßv[Si:2(l)s1/Jslv + :2(2) 

+ eBßVtß'V' S f 2 ( l ) S f : 2 ( 2 ) slßsips2ß' s2v- + 0(s2). 

(6.1) 

14a J. 0. HIRSCHFELDER (ed.), Intermolecular Forces, In-
terscience, New York 1967. 



Here «o is again the spherical part of the scattering 
amplitude. The tensor AßV already occured with 
(4.3); it is related to V2o(r) by (4.4) and (4.2) where 
v(r) should be replaced by V2o{r)- The 4th rank 
tensor BßVtß'V' is defined analogoulsy to AßV; i .e. 
in analogy with T f f , a tensor may be intro-
duced by (cf. 4.1) 

T<AU' = (1 + VG)^ivi^FV'V22(r) (1 + GV). (6.2) 

Then, in analogy with (4.4), one has 

Bpv.u'v' — 2 nh2 ^'f**,/*'"' e> e ) • (6-3) 

The second rank tensor AßV has been expressed, 
through Eq. (4.5) ,in terms of irreducible tensors which 
can be constructed from the Cartesian components 
of the unit vectors e and e'. An expression like (4.5) 
for BßVjß'V' is not given here, since the term con-
taining the product of the second rank spin tensors 
of particles 1 and 2 has little importance for the 
SENFTLEBEN-BEENAKKER effect. Such a term, how-
ever, will contribute to the relaxation constants for 
the vector and tensor polarizations. 

Finally we note that the scattering amplitude 
again contains a ,,n • s-term" of order e2 

£2«3 2 (1) si + S f 2 ( 2 ) S 2 ] • n. (6.4) 

The scalar «3 may be inferred f rom (4.17) and (4.15) 
where v(r) has to be replaced b y V2Q[T). 

§ 7. Concluding Remarks 

i) The leading nonspherical term of the inter-
action potential of two rotating homonuclear mole-
cules (with equal magnitude S o f the spin for 
simplicity here) is proportional to (cf. 5.5) 

1 1 1 1 
(«1/1 «If + S2ßS2v) X ß X r . (7.1) 

Thus the scattering amplitude contains a term of 
order e proportional to (cf. 6.1) 

1 1 1 1 
(«1/1 «if + «2^ «2v) Aßv, (7.2) 

and the term proportional to 

(»1 + s2)-n (7.3) 

is of order e2 (cf. 6.4). For the specific examples 
which were considered, the nonsphericity parameter 

1 4 A . C. LEVI, and F . R . MCCOURT, Physica 38, 415 [1968] . 

ranged f rom 0.05 to 0.3. Hence the term (7.3) is 
small compared with (7.2). 

This explains why " o d d terms in rotational an-
gular m o m e n t u m " 1 4 play a minor role with the 
SENFTLEBEN-BEENAKKER effect of linear nonpolar 
molecules. I t is the term (7.3) of the scattering 
amplitude, namely, which determines the influence 
o f moments linear in the spin vector ( " odd terms") 
on the heat conductivity and viscosity1 5 . The in-
fluence o f moments containing the second rank 
irreducible spin tensor ( "even terms") on the 
classical transport properties, however, is deter-
mined by the term (7.2) of the scattering ampli-
tude 1 5 . Hence one may expect that the depen-
dence of the classical transport properties on the 
magnitude of the magnetic field divided b y the 
density (or pressure) of the gas will be governed b y 
even spin terms of the distribution function. This 
indeed is observed experimentally2 (even for the 
cases where inelastic collisions are important). 

For a nonsphericity parameter e of order 1, 
however, the perturbation expansion (2.3) may no 
longer be used. The terms (7.2) and (7.3) of the 
scattering amplitude then may be expected to be 
o f equal order of magnitude. 

ii) The scattering amplitude (4.3, 10; 6.1, 4) con-
tains several scalar functions a* (i = 0, 1, 2, 3) de-
pending on the relative kinetic energy and the angle 
o f deflection in the center of mass system. It would 
be highly desirable to evaluate these functions to 
a resonable accuracy with a suitably chosen spheri-
cal interaction V and a realistic v(r) or v2o (r). 

iii) So far, have been concerned only with ener-
getically elastic scattering events. A similar analysis 
for inelastic collisions (where the magnitude of the 
rotational spin is changed) shall be given in a sub-
sequent publication. 

We gratefully acknowledge fruitful discussions with Prof. 
D r . L . WALDMANN. 

Appendix: 

Transcription of Legendre Polynomials Pi 
into a Spin Operator Notation 

The potential function for the interaction o f a 
diatomic molecule with a monatomic particle con-
tains the Legendre polynomials P / ( c os (cf. 3.1). 

1 5 S. HESS, and L . WALDMANN, Z . Naturforsch. 23a. 1893 
[1968] . 



Here % is the angle between the unit vectors u and x 
which characterize the directions of the molecular 
axis and of the position vector x = rx f rom the 
center of mass of the molecule to the monatomie 
particle, i .e., 

U • X = COS 1 . ( A . L ) 

In order to obtain the spin dependent interaction 
potential pertaining to this potential function, one 
needs a transcription of the Pi (I — 1, 2, . . . ) into 
a spin operator notation. This transcription shall 
now be given including the case where transitions 
between the rotational energy levels of the molecule 
occur. 

The diatomic molecule is treated as a rigid rota-
tor. Then the rotational wave functions | SM} are 
spherical harmonics YSM 

| SM) = Ysm(V, <p) = Ysm(U) . (A.2) 

Here & and cp are the polar angles of the unit vector 
u with respect to the (arbitrary) direction of quan-
tization which is characterized by the unit vector a 
(cp = 0 if u lies in the plane determined by x and a). 
Clearly S is the magnitude of the spin and M is a 
magnetic quantum number: 

s-s\SM) = S{S+ 1)|-SM), 

a-s\SM) = M \SM>. (A.3) 

Matrix elements of Pi (cos %) with respect to the 
wave functions | SM) have to be evaluated accord-
ing to 

<S'M'\Pi\ SM) = J Y*s.M.(u) PI(U • *) T 5 M ( " ) d 2 u , 
(A.4) 

with d 2 u = sin ftdftdcp. 

In order to perform this integration, we decom-
pose Pi ( u - x ) : 

Pi ( » • £ ) = 21 I 1 I ( » ) Ylm (*)> ( A ' 5 ) 

where Yim(x) -- Yim(0, 0) with cos 0 = a • x. 

Then we note that the remaining integral can be 
expressed in terms of Clebsch-Gordan coeff icients1 7 : 

JFV(») Y*lm(u)YSM(u)d2u 

= j ( S ' O , 1 0 1 SO) ( - 1 f - M ' (A . 6 ) 

• {SM,S'~ M'\lm). 

16 S. DEVONS, and L . J . B. GOLDFARB, in Handbuch der 
Phvsik, ed. S. FLÜGGE, Vol. 42. 3 6 2 , Springer, Berlin 
1957. 

N o w we observe that (—l)s'~M' (SM,S' - M'\lm) 
is a matrix element of the tensor operator 7>16'17 
in spin space which transforms like an adjoint 
spherical harmonic under a rotation of the coordi-
nate system 

<S'M'\Tfms| SM) = ( - (SM, S' - M'\lm). 

(A.7) 

Thus we obtain 

(S'M'\Pi\SM> 

= ]/Tn ^ (S '0 ,Z0|S0) 2 Ylm(x) (A.8) 

. <S'M'\T?ms\SM). 

Note that (S'O, Z0|S0) vanishes unless S'—S + l is 
even. In (A.8) the angle between x and a still oc-
curs. The sum over m is a scalar product (of two 
spherical tensor operators). I t reduces to one term 
with m = 0 if a is parallel to x. 

From the matrix element equation (A.8) one in-
fers the following equation for ,,spin operators" 

Pf's = yin £ § £ = + 1 (S'O, 101 SO) 2 Ylm (*) Tfms. 
' m 

(A.9) 

This relation holds for both elastic (S = S ' ) and in-
elastic (S =t= S ' ) processes. 

Some useful relations for the Tf^f are 

Tfms= 2 ( - \ f - M \ S M , S ' - M ' \ l m ) 
M,M' (A.iuj 

• |S'Jf '><SJf|, 

(T?m
S)' = ( - l ) S ' ~ S + m T Z , (All) 

tr { T f m s { T ^ } = d w ö m m ' . (A.12) 

Note that TfJ, and consequently Pf's, vanishes un-
less | S - S ' | ^ Z ^ S - f S'. 

For S = S ' (elastic scattering) the scalar product 
occurring in (A.9) can be written as a scalar product 
o f an irreducible Cartesian spin tensor with the 
tensor (of the same rank) constructed from the 
Cartesian components of x 

1 lm (x) 
m 

(21 4- 1)!! 1 1 . 
= 7\S0Si... Si-i 4wz» • • • • 

17 A. R. EDMONDS, Angular Momentum in Quantum Me-
chanics. Princeton Univ. Press, Princeton, N.J. 1957. 



The bar 1 denotes the irreducible part of a For 1 — 2, using (SO, 201 <S0) = — So/2Si, one re-
tensor. The abbreviation covers (3.5), 

Sn — S(S+ 1) - 2 

has been used. Thus one obtains 

Pfs = ( S 0 , / 0 | S 0 ) ( 2 Z ~ 1 ) ! ! 

1/2 

1 
^ J! SoSi... Si-i 
S... , . . S.. OC.. , . . OC, 

(A.14) 

( A . 1 5 ) 

pSS _ 2 — 4(Si2 Sfl S j> Xfl Xy . ( A . 1 6 ) 

Likewise, with (SO, 401 SO) = SSoSz/SSxSs, one 
finds for I — 4 
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Influence of a Magnetic Field on the Brownian Motion 
of Particles with Magnetic Moment 

SIEGFRIED HESS 
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(Z. Naturforsch. 23 a, 1911—1913 [1968] ; received 5 August 1968) 

The influence of a magnetic field on the diffusion of Brownian particles with a magnetic moment 
parallel to their internal angular momentum is discussed. Starting point is a generalized Fokker-
Planck equation. Application of the moment method leads to a set of transport-relaxation equations. 
From them the diffusion tensor depending on the external field is inferred. 

In a previous paper1 the Brownian motion of 
(spherical) rotating particles has been studied on 
the basis of a generalized Fokker-Planck equation. 
Due to the coupling of the translational and rota-
tional motions, a diffusion flow gives rise to a cor-
relation between linear and angular velocities. This 
correlation, in turn, influences the value of the dif-
fusion coefficient. 

In this paper, it is assumed that the (neutral) 
Brownian particles have a magnetic moment par-
allel to their internal angular momentum. Then, in 
the presence of an external magnetic field H = H h 
(where h is a unit vector) the Brownian particles 
undergo a precessional motion with frequency a>n 
which is equal to the gyromagnetic ratio times the 
magnitude H of the field. By this precessional mo-
tion the correlation between linear and angular velo-
cities, existing in the transport situation without 
field, is partially destroyed. Consequently, the diffu-
sion coefficient becomes a field-dependent second 
rank tensor. It is characterized by three scalar coeffi-
cients depending on the magnitude of the field. The 
magnetic field dependence of the diffusion is similar 

1 S. HESS, Z . Naturforsch. 2 3 a, 597 [ 1 9 6 8 ] . 
2 H. SENFTLEBEN, Phys. Z . 31, 822, 9 6 1 [ 1 9 3 0 ] . - J. J. M. 

BEENAKKER et al., Phys. Letters 2 , 5 [ 1 9 6 2 ] . For a list of 

to the influence of the magnetic field on the trans-
port properties of dilute polyatomic gases (SENFT-

LEBEN-BEENAKKER e f fect 2 ) . 
Firstly, we shall state the generalized Fokker-

Planck equation in which the precessional motion 
of the internal angular momentum is taken into 
account. Then the transport-relaxation equations 
needed for the discussion of the diffusion problem 
in the presence of a magnetic field are given. Finally 
the diffusion tensor is inferred from these equations. 

Generalized Fokker-Planck Equation 

An ensemble of Brownian particles is described 
by the distribution function 

F = F(t,x,V,W). (1) 

Here t is the time, X the position vector, and V is 
the velocity of a particle (in units of a thermal velo-
city i>0). The difference between the actual internal 
angular velocity and the angular velocity due to a 
thermal equilibrium polarization in a magnetic field 
(both in units of a thermal angular velocity) is de-

the literature on the SENFTLEBEN-BEENAKKER effect see BEEN-
AKKER'S review article in: Festkörperprobleme VIII, ed. O. 
MADELUNG, Vieweg, Braunschweig 1968 . 


