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The rotational angular momentum (spin) dependence of the binary scattering amplitude
operator is investigated for elastic collisions of homonuclear diatomic molecules with monatomic
and diatomic particles. Starting point is a formal expansion of the 7-matrix (and consequently
of the scattering amplitude) with respect to the nonsphericity parameter ¢ which essentially
measures the ratio of the nonspherical and spherical parts of the interaction potential. A trans-
scription of angle dependent potential functions into a spin operator notation is introduced.
Potential functions and values for ¢ may be inferred from the data available in the literature for
the interactions: Ho—He (¢~ 1/4) and Ho—H3 (¢~ 1/20). As far as elastic events are concerned,
irreducible spin tensors of even rank only occur with the interaction potential and consequently
with the scattering amplitude in order e. The most important terms of the scattering amplitude
of diatomic molecules are quadratic in the spins. These terms are discussed in detail. In order &2
the scattering amplitude also contains irreducible spin tensors of odd rank. A knowledge of the
orders of magnitude of the various spin — dependent terms is of interest for the SENFTLEBEN-
BEENAKKER effect and for NMR in polyatomic gases.

The binary scattering amplitude (operator) for
rotating molecules can be divided into a part which
commutes (spherical part) and one which does not
commute (nonspherical part) with the sum of the
rotational angular momenta (spins) of two colliding
particles (diamagnetic molecules).

The spin dependence of the (nonspherical) scat-
tering amplitude is of crucial importance for the
kinetic theory of polyatomic gases as far as it is
concerned with the influence of an external mag-
netic field on the classical transport properties!
(SENFTLEBEN-BEENAKER effect2).

Furthermore, the nonspherical part of the scat-
tering amplitude determines the magnitude of the
rotational relaxation constant which, in turn, is of
interest for the interpretation of NMR data3 ob-
tained for polyatomic gases. Sound absorption
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D. Cohen, North Holland, Amsterdam 1968. — S. HEss
and L. WaLDpMANN, Z. Naturforsch. 21a, 1529 [1966].
— F. R. McCourt and R. F.SNIDER, J. Chem. Phys.
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measurements4 in polyatomic gases yield informa-
tion on rotational transitions caused by inelastic
collisions. The characteristic relaxation time is also
determined by the nonsphericity of the scattering
amplitude.

Theoretical investigations so far have mainly been
concerned with effective cross sections for rotational
transitions® rather than with the calculation of the
nonspherical scattering amplitude which contains
more information and is needed for the SENFT-
LEBEN-BEENAKKER effect.

A “phenomenological” M-matrix theory which
yields the most general form of a spin-dependent
scattering amplitude subject to parity and time
reversal invariance could be applied to molecular
collisions much as it has been used for nuclear col-
lisions® and nuclear reactions?. It seems; desirable,
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6 L. WoLFENSTEIN, and J. AsHKIN, Phys. Rev. 85, 947
[1952].

7 P. L. Csonka, M. J. Moravcsik, and M. D. ScaDron,
Ann. Phys. N.Y.) 41, 1 [1967]. — W. E. KOHLER, and
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however, to find out which of the various terms are
the most important ones, the more so, as the number
of possible terms increases rapidly with the mag-
nitude of the spins involved.

Such an analysis shall be given here for elastic
collisions (i.e., where the directions of the spins but
not their magnitudes may be affected by collisions)
of homonuclear diatomic molecules with small non-
sphericity. In particular “diatomic molecule-spheri-
cal particle” and ‘‘diatomic molecule-diatomic
molecule” collisions shall be considered.

The starting point is the Lippmann-Schwinger
equation which connects the scattering amplitude
with the interaction potential. Although we are far
from solving this integral equation analytically with
a given nonspherical interaction potential in an ap-
proximation which is reasonable for molecular col-
lisions, we are able to indicate the order of mag-
nitude of the various spin-dependent terms of the
scattering amplitude. This is already of great help
for understanding some features of the SENFTLEBEN-
BEENAKKER effect.

§ 1. Connection between Scattering Amplitude
and Interaction Potential

We are concerned with the binary scattering
amplitude operator a in the center of mass system
and on the energy shell. For elastic collisions of
particles with spin it depends on the relative kinetic
energy B = (1/2m)p? (m: reduced mass), on the
unit vectors e’ and e specifying the directions of the
initial and final relative momenta p’=pe’ and
P = pe, respectively, and on the spin vector oper-
ators s; and s (in units of #) of the colliding par-
ticles (labelled by 1 and 2), i.e.

(1.1)

a=a(l, ee'; sy, ss).
The scattering amplitude is related to the scattering
J -matrix on the energy shell by?

m
2 7 h?

a(E,e, e'; s1,8) = — T (E,e,e';s1,82).(1.2)

Here .7 occurs in the momentum representation :
it is linked with the . -matrix in a-representation

by

y(E’ e, el; 31932) (13)
1 . ot xt

9 e.g. M. L. GOLDBERGER, and K. M. Wartsox, Collision
Theory, Wiley, New York 1964, p. 236.
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with k= p/k; .Q:J.dl*.r is a space volume (volume
of quantization).

The scattering amplitude defined by (1.2) has the
dimension of a length. The factor occuring there has
been chosen such that

G(E, e -e)=tritra{a’ (K, e, e'; s1, s2) (1.4)
“a(E,e e';s81,82)}/(281+1)(282+1)

is a spin-averaged differential cross section. Here tr;
denotes the trace with respect to the spin indices
of particle i; S; is the magnitude of the relevant
spin.

The .7 -matrix, in turn, is connected with the
interaction potential ¥~ by the Lippmann-Schwin-
ger equation. The formal solution of this equation
reads (in a representation-invariant notation)

T=v(1+97). (1.5)

Here ¥ is the appropriate Green’s function for out-
going waves pertaining to the full Hamiltonian.

§ 2. Expansion of the .7 -Matrix with Respect
to the Nonspherical Potential

In space representation the interaction potential
7" depends on the position vector x pointing from
the c.m. of molecule 1 to the c.m. of molecule 2,
and on the spin vectors s; and ss. It can be divided
into a spherical part V depending on the distance r
(and possibly on the scalar s;-s3) and a non-
spherical part ev

V' =V + ev. (2.1)
The nonspherical part may be written as
8v(x3 31532) ZEZT)n(T) U‘n(gj 81,32), (2'2)

n>0

where U, is a function of the unit vector x =r-1x
and the spin vectors but not of the distance r.
The numerical factor ¢ (nonsphericity parameter)
is chosen in such a way that the leading v, (r) is of
the same magnitude as V (r). For the nonspherical
potentials we found in the literature, ¢ is approxi-
mately in the range from 0.05 to 0.3. In these
cases, it seems appropriate to expand .7~ with res-
pect to ¢, i.e., with respect to powers of the non-
spherical part of the interaction potential:
T =TO 4 eTD 4 2T 4 ---.  (2.3)
Using (1.5) and

G=G(1 +¢ev9), (2.4)
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where G is the Green’s function pertaining to the
kinetic energy plus the spherical interaction poten-
tial V, one readily finds

TO =V(1+ GV),

TO =1+ VG@)v(l1 +GV),

T® = (14 VG@)vGv(l +GV).

(2.5)

Note that this perturbation expansion with respect
to the nonspherical part of the interaction potential
is quite different from a Born approximation (which
cannot be used for molecular collisions at room tem-
perature) since the dominant spherical part of the
potential is here fully taken into account.

Next we consider several examples of nonspherical
interaction potentials which have been proposed for
diatomic molecule-spherical particle collisions.

§ 3. Spin-Dependent Potential for “Diatomic
Molecule-Spherical Particle” Interaction

We first consider the collision of a rotating di-
atomic molecule with a spherical particle. Collisions
of this type occur with mixtures of diatomic and
monatomic gases as well as in Hy gas where p-Hy
in the rotational ground state can be treated a
spherically symmetric particle.

The interaction potential will depend on the dis-
tance r between the particles and on the angle y
between the axis of the molecule and the vector
connecting its center of mass to the spherical
particle. The dependence on the angle y can be ex-
pressed in terms of Legendre polynomials P (cos y):

V)=V + ;V,, (r) P (cos 7). (3.1)

Here V(r) is the spherical part of the potential. If
we confine our attention to homonuclear diatomic
molecules such as Hs and Ng, then only even
Legendre polynomials occur in the sum in (3.1).
The short range part of the angle-dependent inter-
action potential is linked with the deviation of the
shape of the molecule from spherical symmetrys5.
The long range part of the nonspherical interaction
potential (for particles without a permanent electric
dipole moment) is related to the static quadrupole-
quadrupole interaction and even more to induced
multipole-multipole interactions. In both cases the
Py-term will be the most important one and all
higher Legendre polynomials may be neglected5.
In order to find the connection between the non-
spherical potential (3.1) and a spin-dependent poten-
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tial as used in (2.2), (2.4), (2.5) we first observe that
one has

NESPE

Py(cos y) = 3 upuy Ty y,

(3.2)

where u is a unit vector parallel to the molecular
axis. Cartesian components of vectors and tensors
are denoted by Greek indices. For these the sum-
mation convention is used. The bar — ' denotes
the irreducible (symmetric traceless) part of a ten-
sor, e.g.

—

auby = }(auby + ayby) — Y a-boy, (3-3)

where @ and b are vectors and d,, is the isotropic
unit tensor of rank 2.

Next we have to express the tensor w,u, as a
‘““spin-operator”, i.e. given the spin vector operator
s (with s - u = 0; rotator!) classically speaking, an
average over the orientation of u in a plane perpen-
dicular to s has to be taken. The magnitude S of
the spin is taken to be constant (elastic scattering!).
In operator notation (with respect to the magnetic
quantum numbers) we have with a proportionality
constant ¢

(UpUy)op = CSuSy,

(3.4)

since sy$, is the only irreducible spin tensor of
rank 2 which is available. The subscript “op’ re-
fers to the operator notation (with respect to spin
indices). The constant ¢ may be found by multiply-
ing (3.4) with sys, (and contracting) and using
s-u=0, and

susrsusy=28(S+ 1SS +1) — 4.

Here S is the magnitude of the spin, i.e.
s-s= S(8 + 1). Note that the bracket vanishes
for S =1.

Thus, according to (3.2), one finally obtains

(P2(c0s ))op =—  [S(S+ 1) — §1 5,8, 2y - (3.5)

This result is a special case of the more general
formulas for the ‘““transcription” of P;(cos y) into
a ‘“‘spin-operator’’ notation which, also for inelastic
collisions, may be obtained by using rigid rotator
wave functions and Clebsch-Gordan algebra. For
details, see the appendix.

Thus, we have to deal with an interaction poten-
tial of the type

¥ = V() + ev(r)[S(S + 1) — 3] 1 &7y 548,. (3.6)

The nonsphericity parameter ¢ is independent of S
if the distance of the two atoms of the diatomic
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molecule does not depend on S (rigid rotator). Here
and in the following, we write v(r) instead of va(r)
(cf. 2.2).

Next we want to give some examples for func-
tions V(r), v(r) and the nonsphericity parameter ¢
as they can be obtained from data available in the
literature by using relation (3.5). Our aim is to show
clearly the meaning of ¢ for various potentials and
to give numerical values for it. Therefore, we only
state the functional dependence of V and v on r but
not the numerical values of the constants involved.
Here we consider the interaction of rotating H
molecules with p-Hj in the rotational ground state
and with He atoms.

1. (rotating) He—p-Hg (rotational ground state)

a) In connection with an attempt to explain the
measured viscosity10 of Hy at low temperatures
N1BLETT and TAkAYANAGI!! used the following
functions for the interaction of o-Hs with ground-
state p-Ha:

Vir)y=A(1 +ar)e % — Br=6 —Cr-8,
v(r)=1074(1 —a'r)e*r 4 Br=6,

e = 0.050.

(3.7)
(3.8)

and

There occur quite a lot of (positive) constants 4,
B, C, a, a’, o which may be inferred from Ref.11.
Remarkable is the rather small value for e.

b) In dealing with rotational transitions (where
the magnitudes of the spins are changed during a
collision) TAKAYANAGI12 used a Morse potential for
both p-Hj and o-Hj; interactions with ground state
p-Ha:

V(T) — D(e—a(r — 7o) __ ze—a(r»ro)/Z) ,
v(r) = — De =)

e =0.056.

(3.9)

with (3.10)

Here D, o and ry are constants.

2. (rotating) Hy—He

a) The following potential functions for the o-Hs-
He interaction have been used by Waugh and co-
workers (see Ref.3) in order to calculate rotational
relaxation constants which can be compared with

10 E. W. BECKER, and O. STEHL, Z. Phys. 133, 615 [1952].
11 P, D. NiBLETT, and K. TaARAvANaGI, Proc. Roy. Soc.
London A 250, 222 [1959].
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NMR data:

V(ry= A(e2r — br-6),

v(r)= — A(e-*r — b'r-6) (3.11)
with e=0.142. (3.12)

Again A4, o, b and b'~ 0.4b are constants.

Here the nonsphericity parameter ¢ is almost
three times larger than in the case of the Hy-Ho
interaction. This might be connected with the fact
that the He-atom is smaller than the Ho molecule.

b) RoBERTs13 calculated the (angle dependent)
interaction energy of a Hy molecule with a He atom
from first principles using a simple wave function
made up of 18 orbitals centered on the three nuclei.
It turned out that he could represent the numer-
ically computed interaction energy quite accurately
by a potential function of the type (3.1) with
only a spherical term and a P (cos y)-term. His re-
sults can be expressed in the following form of the
repulsive part of the interaction:

V(r) = Cer,
v(r) = — Ceor, (3.13)
with e =0.282, (3.14)

C and « again being constants.

Note that ROBERTS’ nonsphericity parameter
(3.14) is twice as large as the value (3.12) given by
Waves.

The values for ¢ quoted here apply to the lowest
rotational states of the Hy molecules (i.e. for rota-
tional quantum numbers 1, 2, possibly for 3 and 4
t00). TAKAYANAGI® 12 used the same nonsphericity
for any rotational state of the H,; molecule.
RoBERTS 13, however, showed that the nonsphericity
is quite sensitive to the distance between the protons
(bond length) in the Hy molecule. Hence the non-
sphericity may be expected to increase with the
rotational quantum number.

§ 4. Scattering Amplitude for “Diatomic-
Monatomic” Collisions

With the nonspherical interaction potential (3.6)
the term of the 7 -matrix which is linear in the non-
sphericity parameter ¢ obviously will contain the

12 K. TARAYANAGI, Proc. Phys. Soc. London A 70, 348
[1957]. — Sci. Rep. Saitama Univ. A 3, 87 [1959].
13 C. S. RoBERTs, Phys. Rev. 131, 203, 209 [1963].
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second rank irreducible spin tensor. This term
(cf. 2.5) can be written as

TO =TP[S(S + 1) — FLsys,.  (4.1)
According to (2.5) the tensor T} is given by
TO =1+ VG)x,,x,, N1+ GQV). 4.2

An operator notation has been used here. Note that
the Green’s function G is neither diagonal in z- nor
in p-representation.

In view of (4.1) the part of the scattering am-

—

plitude which is linear in ¢ will also contain sgs,.
Hence up to terms of order ¢ the scattering am-
plitude reads

a=ao+ eAuw[S(S + 1) — 31548, + O(e2). (4.3)

Here ay is the spherical part of the scattering am-
plitude which is connected to 7' (cf. 2.5) ac-
cording to (1.2) and (1.3). The tensor 4, is related
to (4.2) by

Ayy = T (B, e, e'), (4.4)

2nh2

where Tf},) occurs in momentum representation
(cf. 1.3). On the other hand, 4, also can be ex-
pressed in terms of irreducible tensors which can
be constructed from the Cartesian components of
the unit vectors e and e’:

Ay =2a1e, e:-{- az(eyey + e;e;). (4.5)

Here a; and ay are scalar functions (like a¢) depend-
ing on the relative kinetic energy E and the angle
of deflection ¢ defined by

e-e =cosd. (4.6)
These functions are linked with (4.5) by
a1 = (cz A1 — c1242)/D,
az = (c1 A2 — c1241)/D (4.7)

where the abbreviations
Ar=2eue) Apy, Az = (euey +e,0,) Auy, (4.8)

c1=2+2cos?d, c12=3cosd,
Co = % + 2 cos2 ¥, (4.9)
and D = ¢y¢c2 — ¢}, have been used.
Next we consider the terms of the .7 -matrix

which are quadratic in ¢. In particular we want to
show that the interaction potential (3.6) implies that
the scattering amplitude containsa “n - s-term” of
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order &2:
e2ag[S(S+1)— %] 1n-s, (4.10)
where

n=e' X e/sind (4.11)

is a unit vector perpendicular to the collision plane
and ag=ag(E, 9) is a scalar. To this end we note
that

T® =TE (S8 +1) — 125,88, 5, (4.12)

contains a product of two second rank irreducible
spin tensors which can be expressed by a linear
combination of irreducible spin tensors of rank 0
to 4, i.e., one has

2
T® =coTE,, + c186au T

’ (2)
+ casusysy' 8y Ty v

(4.13)

with the constants ¢; (+ = 0, 1, ..., 4). These con-
stants may be determined by multiplying (4.13)
with 1, s, ... and taking the trace on both sides.
Thus one obtains (for spin traces see e.g. HEss and
WaLpmaNN, Ref.1)

SIS+ 1SS +1)—3l,
o1 =i2[S(S+1)— 3.
The 4th rank tensor 7 .

Cco = %
(4.14)

in analogy to (4.2), is

puv,u'v's
given by
TR =1+ V@) 2u20(r) G2, 3, v(r) (1 + GV).

(4.15)

Obviously, the first term in (4.13) is a spherical one.
As, however, it only contributes in order &2, it is
negligible compared with 7. The terms in (4.13)
containing the irreducible spin tensors of rank 2, 3, 4
(in a linear way) are disregarded here, for there is
already a term of order ¢ containing a spin tensor
of rank 2; those of rank 3 and 4 are not of interest
for the SENFTLEBEN-BEENAKKER effect for linear
molecules. Fourth rank spin tensors, however, are
of importance for regular octahedral molecules 132,

The second term in (4.13) yields the desired n-s-
term (4.10) of the scattering amplitude if one takes
(4.13) in p-representation [cf. (1. 2)] Since Tﬁlz,), o
has positive parity the vector £, T, is an axial
vector. The only axial vector which can be con-
structed from p=pe and p’=pe’ is proportional
to the unit vector n, thus one has

eaur T (B, e, €) = COny. (4.16)

13a S, HEess, Phys. Letters 28 A, 87 [1968].



1908

The scalar function C is easily obtained by multi-
plying (4.16) with n;. Hence the scalar function a3
is given by (cf. 1.2 and 4.14)

n;,s,m,,T (E,e,e'). (4.17)

B=—3 mhz‘ neve
§ 5. Spin-Dependent Potential for the Interaction
of Two Diatomic Molecules

Now we consider the interaction of two diatomic
molecules. The interaction potential corresponding
to (3.1) in general will depend on three angles y,
z2 and @. Here y; (¢ = 1, 2) is the angle between
the molecular axis of molecule ¢ and x (x: position
vector of the c.m. of the first molecule relative to
the c.m. of the second molecule), p = g1 — @3 is the
angle between the projections of the molecular axes
on a plane perpendicular to x. Thus the most gen-
eral interaction potential will be of the form

V(r, q1s %2, @) (5.1)
= zz D Vi, m () (Y7 (1> @1) Yem(x2, @2) + c.c.].
" m

The Yym(yi, i) are the usual spherical harmonics
(e.g. see Ref.9). The summation over m ranges from
m =0 tom=min(l, '), the [ and I’ summations run
from 0 to oo.

If the Vi, m with m =0 can be neglected com-
pared with V- o — this indeed is fulfilled for the
H,-Hj interaction — one may write (5.1) in terms
of Legendre polynomials using

Yio(x) = Yio(x) = V@l + 1)/4 7 Py(cos x) -

Thus one obtains

Z Vi (r

Vi(r, y1, x2) = ) Py(cos y1) Py (cos y2), (5.2)

with

Vi) =5 V2L+ 12U+ 1V 0().  (53)

In order to get rid of the angle ¢ one might also
average (5.1) over this angle. Now one also finds an
interaction potential like (5.2), but then the relation
(5.3) is no longer fulfilled.

For identical molecules one has V;;r = V. If the
molecules are homonuclear both ! and I’ are even.

For identical homonuclear diatomic molecules the
most important nonspherical terms will be pro-
portional to

P (cos y1) + Pz (cos y2)

and P (cos x1) P2 (cos y2). (5.4)
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Hence we will have to deal with a spin-dependent
interaction potential analogous to (3.6)

V= V(T)+8'020(T)[Sl_z(l)31u81v+Sf2(2)82u32r] -i'u-i'v

-+ evaz(r) S1_2(1) S1_2(2)81u31732/4' S2p’ i’u-%viu’ Ty .
(5.5)

Relation (3.5) has been used in arriving at (5.5). The
rotational spin vectors of the interacting molecules
are denoted by s; and sg. The abbreviation

S3(i) = Si(S; + 1) — 2,

— where S; is the magnitude of the spin of particle s —
has been introduced for convenience.

Again V(r) is the spherical part of the interaction
potential.

Next we mention briefly two examples for the
potential functions V(r), vag(r), ve2(r) and the value
of the nonsphericity parameter ¢. Both examples
refer to the Hs-Hy interaction.

(5.6)

a) In Ref.11 NiBLETT and TAKAYANAGI gave a
rather complicated angle dependent interaction po-
tential for the Hy-Hjy interaction. But the leading
nonspherical terms are of the type (5.4). From the
data they gave one may infer V, vgp and wee. Both
V and vgg contain short range terms similar to (3.7)
and long range terms proportional to r—6 and r—3,
vg9 only contains terms proportional to r—6 and r—5.
The nonsphericity parameter is of the order 0.05.

b) Dealing with rotational transitions of Hy
molecules, TAkAYANAGI® 12 used a Morse potential
with V and vgo (r) = v () as given by (3.9), vea(r) =0,
and ¢ = 0.056.

For further details on intermolecular forces refe-
rence is made to the reviews articles in vol. 12 of
,;Advances in Chemical Physics‘ 14a

§ 6. Scattering Amplitude for the Collision
of Two Diatomic Molecules

The spin dependent interaction potential (5.5)
implies that the scattering amplitude for the col-
lisions of two diatomic molecules with rotational
spin vectors s; and s, reads up to terms of order &:

2(1) s1u819 + Sy A(2) S2u 520

2(1) ST 2) s1u 819 S2u’ S2 + O (£2) .
6.1)

—

a=ag+ eAu[ST
+ & Buy, v Sf

14a J. O. HirsCHFELDER (ed.), Intermolecular Forces, In-
terscience, New York 1967.
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Here ay is again the spherical part of the scattering
amplitude. The tensor A,, already occured with
(4.3); it is related to vao(r) by (4.4) and (4.2) where
v(r) should be replaced by wgo(r). The 4th rank
tensor By, . is defined analogoulsy to A, ; i.e.
in analogy with 7'(), a tensor 7'() ., may be intro-

duced by (cf. 4.1)
TRy = (14 V@) &y &y Ty &y va2(r) (1 + GV). (6.2)

uv, v’
Then, in analogy with (4.4), one has

m

— gane T

uv,u'v'

Bllv, wy = (Es e, el) : (63)
The second rank tensor A4,, has been expressed,
through Eq.(4.5),in terms of irreducible tensors which
can be constructed from the Cartesian components
of the unit vectors e and e’. An expression like (4.5)
for By, u» is not given here, since the term con-
taining the product of the second rank spin tensors
of particles 1 and 2 has little importance for the
SENFTLEBEN-BEENAKKER effect. Such a term, how-
ever, will contribute to the relaxation constants for

the vector and tensor polarizations.

Finally we note that the scattering amplitude
again contains a ,,n - s-term’ of order &2

2a3[S72(1) 81 + S72(2) 80) m.  (6.4)

The scalar ag may be inferred from (4.17) and (4.15)
where v (r) has to be replaced by wgq(r).

§ 7. Concluding Remarks

i) The leading nonspherical term of the inter-
action potential of two rotating homonuclear mole-
cules (with equal magnitude S of the spin for
simplicity here) is proportional to (cf. 5.5)

(81819 1 S20829) 5;7;4 Zy. (7.1)

Thus the scattering amplitude contains a term of
order ¢ proportional to (cf. 6.1)

—_— —

(814819 + S2u82y) Ay (7.2)
and the term proportional to
(s1+82) (7.3)

is of order &2 (cf. 6.4). For the specific examples
which were considered, the nonsphericity parameter

14 A. C. Levy, and F. R. McCourT, Physica 38, 415 [1968].
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ranged from 0.05 to 0.3. Hence the term (7.3) is
small compared with (7.2).

This explains why “odd terms in rotational an-
gular momentum’ 14 play a minor role with the
SENFTLEBEN-BEENAKKER effect of linear nonpolar
molecules. It is the term (7.3) of the scattering
amplitude, namely, which determines the influence
of moments linear in the spin vector (‘‘odd terms’)
on the heat conductivity and viscosity15. The in-
fluence of moments containing the second rank
irreducible spin tensor (‘‘even terms’) on the
classical transport properties, however, is deter-
mined by the term (7.2) of the scattering ampli-
tudel5. Hence one may expect that the depen-
dence of the classical transport properties on the
magnitude of the magnetic field divided by the
density (or pressure) of the gas will be governed by
even spin terms of the distribution function. This
indeed is observed experimentally2 (even for the
cases where inelastic collisions are important).

For a nonsphericity parameter ¢ of order 1,
however, the perturbation expansion (2.3) may no
longer be used. The terms (7.2) and (7.3) of the
scattering amplitude then may be expected to be
of equal order of magnitude.

ii) The scattering amplitude (4.3, 10; 6.1, 4) con-
tains several scalar functions a; (¢ = 0, 1, 2, 3) de-
pending on the relative kinetic energy and the angle
of deflection in the center of mass system. It would
be highly desirable to evaluate these functions to
a resonable accuracy with a suitably chosen spheri-
cal interaction ¥V and a realistic v(r) or wgq ().

iii) So far, have been concerned only with ener-
getically elastic scattering events. A similar analysis
for inelastic collisions (where the magnitude of the
rotational spin is changed) shall be given in a sub-
sequent publication.

We gratefully acknowledge fruitful discussions with Prof.
Dr. L. WALDMANN.
Appendix:

Transcription of Legendre Polynomials P;
into a Spin Operator Notation

The potential function for the interaction of a
diatomic molecule with a monatomic particle con-
tains the Legendre polynomials P;(cos ) (cf. 3.1).

15 S. Hess, and L. WALDMANN, Z. Naturforsch. 23a. 1893
[1968]. ’
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Here y is the angle between the unit vectors u and x
which characterize the directions of the molecular
axis and of the position vector x = rx from the
center of mass of the molecule to the monatomic
particle, i.e.,

~

u-x=Ccosy. (A.1)

In order to obtain the spin dependent interaction
potential pertaining to this potential function, one
needs a transcription of the P; (I =1, 2,...) into
a spin operator notation. This transcription shall
now be given including the case where transitions
between the rotational energy levels of the molecule
oceur.

The diatomic molecule is treated as a rigid rota-
tor. Then the rotational wave functions |SM) are
spherical harmonics Ysy

|SM> = YSM(ﬁ, (p) = YSM(")'

Here ¢ and ¢ are the polar angles of the unit vector
u with respect to the (arbitrary) direction of quan-
tization which is characterized by the unit vector a
(¢ =0 if u lies in the plane determined by x and a).
Clearly S is the magnitude of the spin and M is a
magnetic quantum number:

s-s|SMy=S8(S+1)|SM>,
a-s|SMy= M|SM>.

(A.2)

(A.3)

Matrix elements of P;(cos y) with respect to the
wave functions | SM) have to be evaluated accord-
ing to
S'M'|Py| SM)y = [ Y (u) Pr(u- x) Yy (u)d2u,
(A.4)

with d2u = sin ¢ ddde.

In order to perform this integration, we decom-
pose Pj(u-Zx):

-~

Pi(u-x) = ) Yim(%),  (A5)

2l+1zylm

Yim (0, 0) with cos @ = a- x.

Then we note that the remaining integral can be
expressed in terms of Clebsch-Gordan coefficients 17:

[Ysu(u th(") Yo (u)d?u
- ]/7 22 (8°0,10[80) (—1)5 M

where Y, (%) =

(A.6)

- (SM, 8 — M'|lm).

16 S, DEvons, and L. J. B. GoLDFARB, in Handbuch der
Physik, ed. S. FLtceE, Vol. 42, 362, Sprmger, Berlin
1957.
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Now we observe that (—1)S ' (SM,S" — M'|lm)
is a matrix element of the tensor operator 7,16,17
in spin space which transforms like an adjoint
spherical harmonic under a rotation of the coordi-
nate system

<S’ lm | SM) = (— I)S'_M' (S*Wv 8 — AW,‘ lm) %
(A.7)
Thus we obtain
S'M'|Py| SM)
2 | A
=Van V3 1 (870,10(50) 3 Yim(3) (A8)

m

C(S'M|TSS| SMy.

Note that (8’0, 10 | S0) vamshes unless §'— 8 41 is
even. In (A.8) the angle between x and a still oc-
curs. The sum over m is a scalar product (of two
spherical tensor operators). It reduces to one term
with m =0 if a is parallel to x.

From the matrix element equation (A.8) one in-
fers the following equation for ,,spin operators”

25 717 ’ ~ rQ
=i l/2l—l-+1 (8°0,10|80) > Yim (2) Tp," .
m

(A.9)

This relation holds for both elastic (S=.8’) and in-
elastic (8= 8") processes.

Some useful relations for the 7S are

S'S 1) —M L
o3 = M,ZM'( 1) (SM,S" — M'|Im) (A.10)
|8’ My <(SM|,
(TRl = =1F-Smggs, (All]
te{ T S(TES)} = 6w Omm- . (A12)

Note that 7', 5, and consequently Py, vanishes un-

less |S—8'|=1<8+8".

For §= 1.8’ (elastic scattering) the scalar product
occurring in (A.9) can be written as a scalar product
of an irreducible Cartesian spin tensor with the
tensor (of the same rank) constructed from the
Cartesian components of x

V4n|/2S +1 Z T35 Y 1 (%)

_. @+nu
T 1'SeSy... 8- Sy w2

—

B T s5s

.. (A13)

17 A. R. EpmoxDps, Angular Momentum in Quantum Me-
chanics, Princeton Univ. Press, Princeton, N.J. 1957.



INFLUENCE OF A MAGNETIC FIELD ON THE BROWNIAN MOTION

The bar denotes the irreducible part of a
tensor. The abbreviation

Sp=[SS+1)—7 (;‘ i) 1)]”2 (A.14)

has been used. Thus one obtains

SS _ @i—nn 1
P = (80,10|80) =3 55—5— (A.15)

—_—
By n o Sy By oo woe B
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For =2, using (80, 20|S0)= —S0/28;, one re-
covers (3.5),

PSS = (A.16)

3 =
— 45,2 SuSrTuly.

Likewise, with (S0, 40|S0)=38(S52/881S53, one
finds for I =4
105 1 o

SS __
Py = 64 828525 Su?

By e Ty (ADT)

Influence of a Magnetic Field on the Brownian Motion
of Particles with Magnetic Moment
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The influence of a magnetic field on the diffusion of Brownian particles with a magnetic moment
parallel to their internal angular momentum is discussed. Starting point is a generalized Fokker-
Planck equation. Application of the moment method leads to a set of transport-relaxation equations.
From them the diffusion tensor depending on the external field is inferred.

In a previous paper! the Brownian motion of
(spherical) rotating particles has been studied on
the basis of a generalized Fokker-Planck equation.
Due to the coupling of the translational and rota-
tional motions, a diffusion flow gives rise to a cor-
relation between linear and angular velocities. This
correlation, in turn, influences the value of the dif-
fusion coefficient.

In this paper, it is assumed that the (neutral)
Brownian particles have a magnetic moment par-
allel to their internal angular momentum. Then, in
the presence of an external magnetic field H=Hh
(where h is a unit vector) the Brownian particles
undergo a precessional motion with frequency wy
which is equal to the gyromagnetic ratio times the
magnitude H of the field. By this precessional mo-
tion the correlation between linear and angular velo-
cities, existing in the transport situation without
field, is partially destroyed. Consequently, the diffu-
sion coefficient becomes a field-dependent second
rank tensor. It is characterized by three scalar coeffi-
cients depending on the magnitude of the field. The
magnetic field dependence of the diffusion is similar

1 S. Hess, Z. Naturforsch. 23 a, 597 [1968].
2 H. Senrriesen, Phys. Z. 31, 822, 961 [1930]. — J. J. M.
Beexakker et al., Phys. Letters 2, 5 [1962]. For a list of

to the influence of the magnetic field on the trans-
port properties of dilute polyatomic gases (SExr1-
LEBEN-BEENAKKER effect 2).

Firstly, we shall state the generalized Fokker-
Planck equation in which the precessional motion
of the internal angular momentum is taken into
account. Then the transport-relaxation equations
needed for the discussion of the diffusion problem
in the presence of a magnetic field are given. Finally
the diffusion tensor is inferred from these equations.

Generalized Fokker-Planck Equation

An ensemble of Brownian particles is described
by the distribution function

F=F(t,x,V,W). (1)

Here ¢ is the time, X the position vector, and V is
the velocity of a particle (in units of a thermal velo-
city v,). The difference between the actual internal
angular velocity and the angular velocity due to a
thermal equilibrium polarization in a magnetic field
(both in units of a thermal angular velocity) is de-

the literature on the SexrrLeBeN-Beenakker effect see BEex-
AKKER’s review article in: Festkorperprobleme VIII, ed. O.
MapEeLune, Vieweg, Braunschweig 1968.



